Tumor necrosis factor receptors types 1 and 2 differentially regulate osteoclastogenesis.
نویسندگان
چکیده
The potent osteoclastogenic agent, tumor necrosis factor-alpha (TNF), exerts its biological effects via two receptors, namely TNF receptors 1 (p55r) and 2 (p75r), each present on osteoclast precursors. Thus, we asked if p55r and p75r differentially impact the osteoclastogenic process. Marrow derived from mice expressing only p55r generates substantially more osteoclasts, in the basal state, than does wild type, while marrow expressing only p75r, produces substantially fewer. Reflecting its preferential activation of p55r, exogenous TNF stimulates osteoclast formation by p55r(+/+)p75r(-/-), but not p55r(-/-)p75r(+/+), marrow. Consistent with the fact that NF-kappaB is essential for osteoclastogenesis, this transcription complex is activated, relative to wild type, in p55r(+/+)p75r(-/-) osteoclast precursors and suppressed in those expressing only p75r. Because p55r enhances, and p75r suppresses, osteoclastogenesis, we asked if their principal ligands, namely soluble and membrane-residing TNF, respectively, differentially impact basal osteoclast recruitment. We find, in contrast to the significant level of osteoclast formation in wild type marrow, osteoclastogenesis by that derived from mice expressing membrane, but not soluble, TNF, is negligible. Thus, optimal therapeutic inhibition of bone resorption may entail selective TNF receptor modulation and/or arrested cleavage of membrane TNF to its soluble form.
منابع مشابه
Macrophage-elicited osteoclastogenesis in response to bacterial stimulation requires Toll-like receptor 2-dependent tumor necrosis factor-alpha production.
The receptor activator of NF-kappaB ligand (RANKL) and the proinflammatory cytokines are believed to play important roles in osteoclastogenesis. We recently reported that the innate immune recognition receptor, Toll-like receptor 2 (TLR2), is crucial for inflammatory bone loss in response to infection by Porphyromonas gingivalis, the primary organism associated with chronic inflammatory periodo...
متن کاملCurrent Understanding of RANK Signaling in Osteoclast Differentiation and Maturation
Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on ...
متن کاملTyrosine Kinase Inhibitors Regulate OPG through Inhibition of PDGFRβ
Nilotinib and imatinib are tyrosine kinase inhibitors (TKIs) used in the treatment of chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (GIST). In vitro, imatinib and nilotinib inhibit osteoclastogenesis, and in patients they reduce levels of bone resorption. One of the mechanisms that might underlie these effects is an increase in the production of osteoprotegerin (OPG). In th...
متن کاملCurrent topics in pharmacological research on bone metabolism: osteoclast differentiation regulated by glycosphingolipids.
Glycosphingolipids are thought to play important roles in the development and function of several tissues, although the function of glycolipids in osteoclastogenesis has not been clearly demonstrated. In the present study, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), a glucosylceramide synthase inhibitor, completely inhibited osteoclastogenesis induced by macrophage-colony...
متن کاملEffects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis
The receptor activator of NF-κB ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-κB and other signal transduction pathways essential for osteoclastogenesis, such as Ca(2+) signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate (IP(3)) and IP(3)-mediated cellular function of RANKL during...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 275 35 شماره
صفحات -
تاریخ انتشار 2000